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Abstract. We present a systematic study of 400 combinations of the charged lepton and neutrino mass
matrices with six vanishing entries or texture zeros. Only 24 of them, which can be classified into a few
distinct categories, are found to be compatible with current neutrino oscillation data at the 3σ level. A
peculiar feature of the lepton mass matrices in each category is that they have the same phenomenological
consequences. Taking account of a simple seesaw scenario for six parallel patterns of the charged lepton
and Dirac neutrino mass matrices with six zeros, we show that it is possible to fit the experimental data
at or below the 2σ level. In particular, the maximal atmospheric neutrino mixing can be reconciled with a
strong neutrino mass hierarchy in the seesaw case. Numerical predictions are also obtained for the neutrino
mass spectrum, flavor mixing angles, CP -violating phases and effective masses of the tritium beta decay
and the neutrinoless double beta decay.

PACS. 12.15.Ff, 12.10.Kt

1 Introduction

Recent solar [1], atmospheric [2], reactor (KamLAND [3]
and CHOOZ [4]) and accelerator (K2K [5]) neutrino oscil-
lation experiments have provided us with very convincing
evidence that neutrinos are massive and lepton flavors are
mixed. In the framework of three lepton families, a full
description of the lepton mass spectra and flavor mixing
at low energies needs twelve physical parameters:
(1) three charged lepton masses me, mµ and mτ , which
have precisely been measured [6];
(2) three neutrino masses m1, m2 and m3, whose rela-
tive sizes (i.e., two independent mass-squared differences
∆m2

21 ≡ m2
2 − m2

1 and ∆m2
31 ≡ m2

3 − m2
1) have roughly

been known from solar (∆m2
21 ∼ 10−5 eV2) and atmo-

spheric (|∆m2
31| ∼ 10−3 eV2) neutrino oscillations;

(3) three flavor mixing angles θ12, θ23 and θ13, whose val-
ues have been determined or constrained to an acceptable
degree of accuracy from solar (θ12 ∼ 33◦), atmospheric
(θ23 ∼ 45◦) and reactor (θ13 < 13◦) neutrino oscillations;
(4) three CP -violating phases δ, ρ and σ, which are com-
pletely unrestricted by current neutrino data.

The future neutrino oscillation experiments are ex-
pected to fix the sign of ∆m2

31, to pin down the magnitude
of θ13 and to probe the “Dirac-type” CP -violating phase
δ. The proposed precision experiments for the tritium beta
decay and the neutrinoless double beta decay will help de-
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termine or constrain the absolute scale of three neutrino
masses. Some information about the “Majorana-type” CP -
violating phases ρ and σ may also be achieved from a del-
icate measurement of the neutrinoless double beta decay.
However, it seems hopeless to separately determine ρ and σ
from any conceivable sets of feasible neutrino experiments
in the foreseeable future.

The phenomenology of lepton masses and flavor mixing
at low energies can be formulated in terms of the charged
lepton mass matrix Ml and the (effective) neutrino mass
matrix Mν . While the former is in general arbitrary, the
latter must be a symmetric matrix required by the Majo-
rana nature of three neutrino fields. Hence we diagonalize
Ml by using two unitary matrices and Mν by means of a
single unitary matrix:

U†
l MlÛl =


me 0 0

0 mµ 0
0 0 mτ


 ,

U†
νMνU∗

ν =


m1 0 0

0 m2 0
0 0 m3


 .

(1)

The lepton flavor mixing matrix V is defined as V ≡ U†
l Uν ,

which describes the mismatch between the diagonalizations
of Ml and Mν . In the flavor basis where Ml is diagonal and
positive, V directly links the neutrino mass eigenstates
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(ν1, ν2, ν3) to the neutrino flavor eigenstates (νe, νµ, ντ ):

νe

νµ

ντ


 =


Ve1 Ve2 Ve3

Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3





ν1

ν2

ν3


 . (2)

A convenient parametrization of V is

V =

 c12c13 s12c13 s13

−c12s23s13 − s12c23e−iδ −s12s23s13 + c12c23e−iδ s23c13

−c12c23s13 + s12s23e−iδ −s12c23s13 − c12s23e−iδ c23c13




×

eiρ 0 0

0 eiσ 0
0 0 1


 , (3)

where cij ≡ cos θij and sij ≡ sin θij (for ij = 12, 23, 13).
We know that θ23 > θ12 > θ13 holds, but how small θ13
is remains an open question. A global analysis of current
neutrino oscillation data shows that θ13 is most likely to
lie in the range 4◦ ≤ θ13 ≤ 6◦ [7]. In this case, we are
left with a bi-large mixing pattern of V , which is quite
different from the tri-small mixing pattern of the quark
flavor mixing matrix.

To interpret the observed hierarchy of ∆m2
21 and ∆m2

31
as well as the bi-large lepton flavor mixing pattern, many
phenomenological ansätze of lepton mass matrices have
been proposed in the literature [8]. A very interesting cat-
egory of the ansätze focus on the vanishing entries or texture
zeros of Ml and Mν in a specific flavor basis, from which
some non-trivial and testable relations can be established
between the flavor mixing parameters and the lepton mass
ratios. We argue that texture zeros of lepton mass matrices
might result from a kind of new (Abelian or non-Abelian)
flavor symmetry beyond the standard electroweak model.
Such zeros may dynamically mean that the corresponding
matrix elements are sufficiently suppressed in comparison
with their neighboring counterparts. From a phenomeno-
logical point of view, the study of possible texture zeros
of Ml and Mν at low energies do make sense, because it
ought to help reveal the underlying structures of leptonic
Yukawa couplings at a superhigh energy scale.

Themainpurpose of this article is to analyze the six-zero
textures of Ml and Mν in a systematic way. To be specific,
we take Ml to be symmetric, just as Mν is. This point is
true in a number of SO(10) grand unification models, in
which the group symmetry itself may dictate all fermion
mass matrices to be symmetric [9]. Then a pair of off-
diagonal texture zeros in Ml or Mν can be counted as one
zero. We further require that each mass matrix contain
three texture zeros, such that the moduli of its three non-
vanishing elements can fully be determined in terms of its
three mass eigenvalues1.

Because there exist 20 different patterns of Ml or Mν

with three texture zeros, we totally obtain 20 × 20 = 400
1 One may certainly consider the possibility that one mass

matrix contains two zeros and the other consists of four zeros.
In this case, the former loses the calculability – namely, its four

combinations of Ml and Mν with six texture zeros. A care-
ful analysis shows that only 24 of them, which can be
classified into a few distinct categories, are consistent with
current neutrino oscillation data at the 3σ level. We find
that the lepton mass matrices in each category have a pecu-
liar feature: they do not have the same structures, but their
phenomenological consequences are exactly the same. This
isomeric character makes the six-zero textures of lepton
mass matrices especially interesting for model building. It
is noticed that those 24 patterns of Ml and Mν are difficult
to agree with today’s experimental data at the 2σ level,
mainly due to a potential tension between the smallness of
∆m2

21/|∆m2
31| and the largeness of sin2 θ23. Taking account

of a very simple seesaw scenario for six parallel patterns of
the charged lepton and Dirac neutrino mass matrices with
six zeros, we demonstrate that it is possible to fit the present
neutrino data at or below the 2σ level. In particular, the
maximal atmospheric neutrino mixing (i.e., sin2 2θ23 ≈ 1)
can be reconciled with a strong neutrino mass hierarchy
in the seesaw case. Specific numerical predictions are also
obtained for the neutrino mass spectrum, flavor mixing
angles, CP -violating phases and effective masses of the
tritium beta decay and the neutrinoless double beta decay.

The remaining part of this article is organized as follows.
A classification of the six-zero textures of lepton mass ma-
trices is presented in Sect. 2, where a few criteria to select
the phenomenologically favorable patterns of Ml and Mν

are also outlined. Section 3 is devoted to the analytical and
numerical calculations of 24 patterns of lepton mass ma-
trices with or without the structural parallelism between
Ml and Mν . A simple application of the seesaw mechanism
to the charged lepton and Dirac neutrino mass matrices
with six texture zeros is illustrated in Sect. 4. Finally, we
summarize our main results in Sect. 5.

2 A classification of the six-zero textures

A symmetric lepton mass matrix M (i.e., Ml or Mν) has
six independent entries. If three of them are taken to be
vanishing, we totally arrive at

6C3 =
6!

3! (6 − 3)!
= 20 (4)

patterns, which are structurally different from one another.
These twenty patterns of M can be classified into four cat-
egories:
(1) Three diagonal matrix elements of M are all vanishing

independent moduli cannot completely be calculated in terms of
its three mass eigenvalues; and the latter causes the correlation
between one of its three mass eigenvalues with the other two –
this kind of mass correlation is in general incompatible with the
relevant experimental data. One must reject the possibility that
one mass matrix consists of one zero and the other contains five
zeros, because the latter only has a single non-vanishing mass
eigenvalue and is in strong conflict with our current knowledge
about the charged lepton or neutrino masses. Therefore, we
restrict ourselves to the most interesting and feasible case: six
texture zeros are equally shared between Ml and Mν .
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(type 0):

M0 =


0 × ×

× 0 ×
× × 0


 , (5)

where those non-vanishing entries are simply symbolized
by ×’s.
(2) Two diagonal matrix elements of M are vanishing
(type I):

MI1 =


0 × 0

× 0 ×
0 × ×


 , MI2 =


0 0 ×

0 × ×
× × 0


 ,

MI3 =


0 × ×

× 0 0
× 0 ×


 , MI4 =


0 × ×

× × 0
× 0 0


 ,

MI5 =


× 0 ×

0 0 ×
× × 0


 , MI6 =


× × 0

× 0 ×
0 × 0


 , (6)

which are of rank three; and

MI7 =


0 0 ×

0 0 ×
× × ×


 , MI8 =


0 × 0

× × ×
0 × 0


 ,

MI9 =


× × ×

× 0 0
× 0 0


 , (7)

which are of rank two.
(3)One diagonalmatrix element ofM is vanishing (type II):

MII1 =


× × 0

× 0 0
0 0 ×


 , MII2 =


× 0 ×

0 × 0
× 0 0


 ,

MII3 =


0 × 0

× × 0
0 0 ×


 , MII4 =


0 0 ×

0 × 0
× 0 ×


 ,

MII5 =


× 0 0

0 × ×
0 × 0


 , MII6 =


× 0 0

0 0 ×
0 × ×


 , (8)

which are of rank three; and

MII7 =


× × 0

× × 0
0 0 0


 , MII8 =


× 0 ×

0 0 0
× 0 ×


 ,

MII9 =


0 0 0

0 × ×
0 × ×


 , (9)

which are of rank two.
(4) Three diagonal matrix elements of M are all non-
vanishing (type III):

MIII =


× 0 0

0 × 0
0 0 ×


 . (10)

We see that M0 and MI1 are the well-known Zee [10]
and Fritzsch [11] patterns of fermion mass matrices, respec-
tively. Both of them are disfavored in the quark sector [12].
While the original Zee ansatz is also problematic in describ-
ing lepton masses and flavor mixing [13], the Fritzsch ansatz
is found to be essentially compatible with current neutrino
oscillation data [14].

Allowing the charged lepton or neutrino mass matrix
to take one of the above three-zero textures, we totally
have 20 × 20 = 400 combinations of Ml and Mν . We find
that 141 of them can easily be ruled out. First, the pattern
in (5) is not suitable for Ml, because three charged leptons
have a strong mass hierarchy and the sum of their masses
(i.e., the trace of Ml) cannot be zero. Second, the rank-two
patterns in (7) and (9) are not suitable for Ml, because the
former must have one vanishing mass eigenvalue. Third,
Ml and Mν cannot simultaneously take the pattern in (10),
otherwise there would be no lepton flavor mixing. We are
therefore left with (20 − 7) × 20 − 1 = 259 combinations
of Ml and Mν .

To pick out the phenomenologically favorable six-zero
patterns of lepton mass matrices from 259 combinations of
Ml and Mν , one has to confront their concrete predictions
for the lepton mass spectra and flavor mixing angles with
current neutrino oscillation data. The strategies to do so
are outlined below.
(1) For each combination of Ml and Mν , we do the diag-
onalization like (1). Because Ml has been specified to be
symmetric, Ûl = U∗

l must hold. The matrix elements of Ul

can be given in terms of two mass ratios (xl ≡ me/mµ ≈
0.00484 and yl ≡ mµ/mτ ≈ 0.0594 [6]) and two irremov-
able phase parameters2. A similar treatment is applicable
for the neutrino sector. The ratio of two independent neu-
trino mass-squared differences reads

Rν ≡
∣∣∣∣ ∆m2

21

∆m2
31

∣∣∣∣ = y2
ν

1 − x2
ν

|1 − x2
νy2

ν | , (11)

where xν ≡ m1/m2 and yν ≡ m2/m3. Note that xν < 1
(i.e., m1 < m2) must hold, but it remains unclear whether
yν < 1 (normal mass hierarchy) or yν > 1 (inverted mass
hierarchy). The numerical results for ∆m2

21 and |∆m2
31|,

which are obtained from a global analysis of current neu-
trino oscillation data [15], have been listed in Table 7. We
are therefore able to figure out the allowed range of Rν .
(2) The lepton flavor mixing matrix V = U†

l Uν can then be
obtained. Its nine elements depend on four mass ratios (xl ,
yl , xν and yν) and two irremovable phase combinations,

2 Without loss of generality, we can always arrange one of
the three non-vanishing entries of Ml (or Mν) to be positive.
We are then left with two free phase parameters in Ml (or Mν).
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which will subsequently be denoted as α and β. In the
standard parametrization of V , as shown in (2), one has

sin2 θ12 =
|Ve2|2

1 − |Ve3|2 ,

sin2 θ23 =
|Vµ3|2

1 − |Ve3|2 ,

sin2 θ13 = |Ve3|2. (12)

The experimental results for sin2 θ12, sin2 θ23 and sin2 θ13
are also listed in Table 7.
(3) With the help of current experimental data, we make
use of (11) and (12) to look for the parameter space of
each pattern of lepton mass matrices. The relevant free
parameters include two neutrino mass ratios (xν and yν)
and two CP -violating phases (α and β). The latter may
in general vary between 0 and 2π. In our numerical anal-
ysis the points of xν , yν , α and β will be generated by
scanning their possible ranges according to a flat random
number distribution. Thus the density of output points
in the (xν , yν) and (α, β) plots will be a clear reflection
of strong constraints, imposed by the neutrino oscillation
data and the model (or ansatz) itself, on these parame-
ters. A combination of Ml and Mν will be rejected, if its
parameter space is found to be empty.

Of course, whether the parameter space of a specific
pattern of lepton mass matrices is empty or not depends on
the confidence levels of relevant experimental data.We shall
focus on the 2σ and 3σ intervals of ∆m2

21, ∆m2
31, sin2 θ12,

sin2 θ23 and sin2 θ13 given in [15]. It is worth mentioning
that a plain scan of the unknown parameters (xν , yν) and
(α, β) is empirically simple and conservative, provided the
reasonable ranges of ∆m2

21 etc. have been fixed. In this
approximation the error bars of those observables need
not be statistically treated.

Examining all 259 combinations of the charged lepton
and neutrino mass matrices is a lengthy but straightforward
work. We find that only 24 of them, whose Ml and Mν

both belong to type I given in (6) and (7), are compatible
with current neutrino oscillation data at the 3σ level. The
detailed analytical and numerical calculations of those 24
patterns will be presented in Sects. 3 and 4.

Once the parameter space of a given pattern of lepton
mass matrices is fixed, one may obtain some predictions
for the neutrino mass spectrum and leptonic CP -violation.
For example, the absolute values of three neutrino masses
can be determined as follows:

m3 =
1√|1 − y2

ν |
√

∆m2
atm ,

m2 =
yν√|1 − y2

ν |
√

∆m2
atm =

1√
1 − x2

ν

√
∆m2

sun ,

m1 =
xν√

1 − x2
ν

√
∆m2

sun. (13)

Three CP -violating phases in the standard parametriza-
tion of V are also calculable. As for CP -violation in neu-
trino–neutrino or antineutrino–antineutrino oscillations,

its strength is measured by the Jarlskog invariant J [16].
The definition of J reads

Im
(
VaiVbjV

∗
ajV

∗
bi

)
= J

∑
c,k

(εabcεijk) , (14)

where the subscripts (a, b, c) and (i, j, k) run respectively
over (e, µ, τ) and (1, 2, 3). The magnitude of J depends on
both (xν , yν) and (α, β). If |J | ∼ 1% is achievable, then
leptonic CP - and T-violating effects could be measured
in a variety of long-baseline neutrino oscillation experi-
ments [17] in the future.

In addition, interesting predictions can be achieved for
the effective mass of the tritium beta decay 〈m〉e and that
of the neutrinoless double beta decay 〈m〉ee:

〈m〉2e ≡
3∑

i=1

(
m2

i |Vei|2
)

= m2
3
(
x2

νy2
ν |Ve1|2 + y2

ν |Ve2|2 + |Ve3|2
)

,

〈m〉ee ≡
∣∣∣∣∣

3∑
i=1

(
miV

2
ei

)∣∣∣∣∣
= m3

∣∣xνyνV 2
e1 + yνV 2

e2 + V 2
e3

∣∣ . (15)

The present experimental upper bound on 〈m〉e is 〈m〉e <
2.2 eV [6], while the sensitivity of the proposed KATRIN
experiment is expected to reach 〈m〉e ∼ 0.3 eV [18]. In
comparison, the upper limit 〈m〉ee < 0.35 eV has been set
by the Heidelberg–Moscow Collaboration [19] at the 90%
confidence level3. The sensitivity of the next-generation
experiments for the neutrinoless double beta decay makes
it possible to reach 〈m〉ee ∼ 10 meV to 50 meV [21].

3 Favored patterns of lepton mass matrices

The 24 patterns of lepton mass matrices, which are found
to be compatible with current neutrino oscillation data
at the 3σ level, all belong to the type-I textures listed
in (6) and (7). To make our subsequent discussions more
convenient and concrete, we rewrite those type-I textures
of Ml or Mν and list them in Table 8. Two comments are
in order.
(1) Each type-I texture of M (i.e., Ml or Mν) can be
decomposed into M = PMPT, where P denotes a diagonal
phase matrix and M is a real mass matrix with three
positive non-vanishing elements. The diagonalization of
M requires an orthogonal transformation:

O†MO∗ =


λ1 0 0

0 λ2 0
0 0 λ3


 , (16)

where λi (for i = 1, 2, 3) stand for the physical masses of
charged leptons (i.e., λ1,2,3 = me,µ,τ ) or neutrinos (i.e.,

3 If the reported evidence for the existence of the neutrinoless
double beta decay [20] is taken into account, one has 0.05 eV ≤
〈m〉ee ≤ 0.84 eV at the 95% confidence level.
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λi = mi). Then the unitary matrix U (i.e., Ul or Uν) used
to diagonalize M takes the form U = PO.
(2) Note that the matrix elements of M and O can be
determined in terms of λi. This calculability allows us to
express the rank-3 (or rank-2) patterns of M in a universal
way, as shown in Table 8. It turns out that the relation

MIn
= EnMI1E

T
n , (n = 1, . . . , 6) (17)

holds for those rank-3 textures, where

E1 =


1 0 0

0 1 0
0 0 1


 , E2 =


1 0 0

0 0 1
0 1 0


 ,

E3 =


0 1 0

1 0 0
0 0 1


 , E4 =


0 1 0

0 0 1
1 0 0


 ,

E5 =


0 0 1

1 0 0
0 1 0


 , E6 =


0 0 1

0 1 0
1 0 0


 . (18)

As for three rank-2 textures, we have

MI7 = E1MI7E
T
1 ,

MI8 = E4MI7E
T
4 , (19)

MI9 = E5MI7E
T
5 .

It is easy to check that En is a real orthogonal matrix; i.e.,
EnET

n = ET
n En = E1 holds. In addition, E4 = E2E3 =

E3E6 = E6E2 and E5 = ET
4 hold.

Equations (17) and (19) will be useful to demonstrate
the isomeric features of a few categories of lepton mass
matrices with six texture zeros, as one can see later on.

3.1 Six parallel patterns (rank-3)

We have six parallel patterns of Ml and Mν , see Table 1,
which are compatible with current neutrino oscillation data
at the 3σ level. Given M l,ν

I1 being diagonalized by the uni-
tary matrix Ul,ν , M l,ν

In
(for n > 1) can then be diagonalized

by EnUl,ν as a result of (17). The lepton flavor mixing ma-
trix derived from M l

In
and Mν

In
is found to be identical to

V = U†
l Uν , which is derived from M l

I1 and Mν
I1 :

Vn ≡ (EnUl)†(EnUν) = U†
l (ET

n En)Uν = V. (20)

This simple relation implies that six parallel patterns of
Ml and Mν are isomeric – namely, they are structurally
different from one another, but their predictions for lepton

Table 1. Six parallel patterns of Ml and Mν

Ml I1 I2 I3 I4 I5 I6
Mν I1 I2 I3 I4 I5 I6

masses and flavor mixing are exactly the same [22]. It is
therefore enough for us to consider only one of the six pat-
terns in the subsequent discussions. With the help of (16),
the moduli of three non-vanishing elements of Ml or Mν

are given by

A = λ3 (1 − y + xy) ,

B = λ3

[
y(1 − x)(1 − y)(1 + xy)

1 − y + xy

]1/2

,

C = λ3

(
xy2

1 − y + xy

)1/2

, (21)

where the subscript “l” or “ν” has been omitted for sim-
plicity. Furthermore, we obtain the matrix elements of O
in terms of the mass ratios x and y (see Table 8 for the
definition of ai , bi and ci):

a1 = +
[

1 − y

(1 + x)(1 − xy)(1 − y + xy)

]1/2

,

a2 = −i
[

x(1 + xy)
(1 + x)(1 + y)(1 − y + xy)

]1/2

,

a3 = +
[

xy3(1 − x)
(1 − xy)(1 + y)(1 − y + xy)

]1/2

;

b1 = +
[

x(1 − y)
(1 + x)(1 − xy)

]1/2

,

b2 = +i
[

1 + xy

(1 + x)(1 + y)

]1/2

,

b3 = +
[

y(1 − x)
(1 − xy)(1 + y)

]1/2

;

c1 = −
[

xy(1 − x)(1 + xy)
(1 + x)(1 − xy)(1 − y + xy)

]1/2

,

c2 = −i
[

y(1 − x)(1 − y)
(1 + x)(1 + y)(1 − y + xy)

]1/2

,

c3 = +
[

(1 − y)(1 + xy)
(1 − xy)(1 + y)(1 − y + xy)

]1/2

. (22)

Note that a2, b2 and c2 are imaginary, and their non-trivial
phases arise from a minus sign of the determinant of M (i.e.,
Det(M) = −AC2e2iϕ). Because of 0 < xν < 1 extracted
from the solar neutrino oscillation data [1], we can obtain
0 < yν < 1 from (21) as required by the positiveness
of Aν , Bν and Cν

4. Hence the six isomeric patterns of
lepton mass matrices under discussion guarantee a normal
neutrino mass spectrum.

4 Although yν > 1 is in principle allowed by rephasing the
non-vanishing elements of Mν , our numerical analysis indi-
cates that this possibility is actually incompatible with current
experimental data.
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Fig. 1. Parallel patterns of Ml and Mν in Table 1: the parameter
space of (xν , yν) and (α, β) at the 3σ level

Nine elements of the lepton flavor mixing matrix V =
U†

l Uν = O†
l (P

†
l Pν)Oν can explicitly be written as

Vpq = (al
p)

∗aν
qeiα + (bl

p)
∗bν

qeiβ + (cl
p)

∗cν
q , (23)

where the subscripts p and q run respectively over (e, µ, τ)
and (1, 2, 3), and the phase parameters α and β are defined
by α ≡ (ϕν − ϕl ) − β and β ≡ (φν − φl ). Note that V
consists of four free parameters xν , yν , α and β. The latter
can be constrained, with the help of (11) and (12), by using
the experimental data listed in Table 7 (∆m2

31 > 0 as a
consequences of 0 < yν < 1). Once the parameter space
of (xν , yν) and (α, β) is fixed, one may quantitatively de-
termine the Jarlskog invariant J and three CP -violating
phases (δ, ρ, σ). It is also possible to determine the neutrino
mass spectrum and two effective masses 〈m〉e and 〈m〉ee

defined in (15). The results of our numerical calculations
are summarized in Figs. 1–3. Some discussions are in order.
(1) We have noticed that the parameter space of (xν , yν)
or (α, β) will be empty, if the best-fit values or the 2σ in-
tervals of ∆m2

21, ∆m2
31, sin2 θ12, sin2 θ23 and sin2 θ13 are

taken into account. This situation is due to a potential
conflict between the largeness of sin2 θ23 and the smallness
of Rν , which cannot simultaneously be fulfilled for six par-
allel patterns of Ml and Mν at or below the 2σ level.
(2) If the 3σ intervals of ∆m2

21, ∆m2
31, sin2 θ12, sin2 θ23 and

sin2 θ13 are used, however, the consequences of Ml and Mν

on two neutrino mass-squared differences and three flavor
mixing angles can be compatible with current experimen-
tal data. Figure 1 shows the allowed parameter space of
(xν , yν) and (α, β) at the 3σ level. We see that β ∼ π holds.

Fig. 2. Parallel patterns of Ml and Mν in Table 1: the outputs
of sin2 θ12, sin2 θ23 and sin2 θ13 versus Rν at the 3σ level

This result is certainly consistent with the previous obser-
vation [14]. Because of yν ∼ 0.25, m3 ≈

√
∆m2

31 is a good
approximation. The neutrino mass spectrum can actually
be determined to an acceptable degree of accuracy by us-
ing (13). For instance, we obtain m3 ≈ (3.8–6.1)×10−2 eV,
m2 ≈ (0.95–1.5)× 10−2 eV and m1 ≈ (2.6–3.4)× 10−3 eV,
where xν ≈ 1/3 and yν ≈ 1/4 have typically been taken.
(3) Figure 2 shows the outputs of sin2 θ12, sin2 θ23 and
sin2 θ13 versus Rν at the 3σ level. One may observe that the
maximal atmospheric neutrino mixing (i.e., sin2 θ23 ≈ 0.5
or sin2 2θ23 ≈ 1) cannot be achieved from the isomeric
lepton mass matrices under consideration. To be specific,
sin2 θ23 < 0.40 (or sin2 2θ23 < 0.96) holds in our ansatz. It
is impossible to get a larger value of sin2 θ23 even if Rν ap-
proaches its upper limit. In contrast, the output of sin2 θ12
is favorable and has less dependence on Rν . One may also
see that only small values of sin2 θ13 (≤ 0.016) are favored.



Shun Zhou, Zhi-zhong Xing: A systematic study of neutrino mixing and CP -violation from lepton mass matrices 501

Fig. 3. Parallel patterns of Ml and Mν in Table 1: the outputs
of (〈m〉e, 〈m〉ee), (δ, J ) and (ρ, σ) at the 3σ level

More precise experimental data on sin2 θ23, sin2 θ13 and Rν

will allow us to examine whether those parallel patterns
of lepton mass matrices with six texture zeros can really
survive the experimental test or not.
(4) Figure 3 illustrates the results of two effective masses
〈m〉e and 〈m〉ee, three CP -violating phases (δ, ρ, σ), and
the Jarlskog invariant J . It is obvious that 〈m〉e ∼ 10−2 eV
for the tritium beta decay and 〈m〉ee ∼ 10−3 eV for the
neutrinoless double beta decay. Both of them are too small
to be experimentally accessible in the foreseeable future.
We find that the maximal magnitude of J is close to 0.015
around δ ∼ 3π/4 (or 5π/4). As for the Majorana phases
ρ and σ, the relation (ρ − σ) ≈ π/2 holds. This result is
attributed to the fact that the matrix elements (aν

2 , bν
2 , cν

2)
of Uν are all imaginary and they give rise to an irremovable
phase shift between Vp1 and Vp2 (for p = e, µ, τ) elements
through (22). Such a phase difference affects 〈m〉ee, but it
has nothing to do with 〈m〉e and J .

Fig. 4. Non-parallel patterns of Ml and Mν in Table 2: the
parameter space of (xν , yν) and (α, β) at the 3σ level

To relax the potential tension between the smallness
of Rν and the largeness of sin2 θ23, we shall incorporate a
simple seesaw scenario in the six-zero textures of charged
lepton and Dirac neutrino mass matrices in Sect. 4.

3.2 Six non-parallel patterns (rank-3)

The six non-parallel patterns of Ml and Mν in Table 2, in
which Mν is of rank 3, are found to be compatible with
current neutrino oscillation data at the 3σ level. Given M l

I1
and Mν

I2 being diagonalized respectively by the unitary
matrices Ul and E2Uν , where Ul,ν = Pl,νOl,ν with Ol,ν

being simple functions of xl,ν and yl,ν as already shown
in (22), the corresponding flavor mixing matrix reads

Vpq = (al
p)

∗aν
qeiα + (bl

p)
∗cν

qeiβ + (cl
p)

∗bν
q , (24)

where the subscripts p and q run respectively over (e, µ, τ)
and (1, 2, 3), the phase parameters α and β are defined by
α ≡ (ϕν − ϕl ) − (2φν − φl) and β ≡ −(φν + φl ), and an
overall phase factor eiφν has been omitted. Taking account
of the other five combinations of Ml and Mν in Table 2,
we notice that M l

In
(for n �= 1) and Mν

In
(for n �= 2)

can be diagonalized by EnUl and (EnET
2 )Uν , respectively.

Table 2. The six non-parallel patterns of Ml and Mν

Ml I1 I2 I3 I4 I5 I6
Mν I2 I1 I5 I6 I3 I4
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Fig. 5. Non-parallel patterns of Ml and Mν in Table 2: the
outputs of sin2 θ12, sin2 θ23 and sin2 θ13 versus Rν at the 3σ level

Because the relation

ET
2 (E1E

T
2 ) = ET

3 (E5E
T
2 ) = ET

4 (E6E
T
2 ) = ET

5 (E3E
T
2 )

= ET
6 (E4E

T
2 ) = E1 (25)

holds, (24) is universally valid for all six patterns. They
are therefore isomeric.

We do a numerical analysis of six non-parallel patterns
of Ml and Mν in Table 2. The parameter space of (xν , yν)
or (α, β) is found to be acceptable, when the 3σ intervals of
∆m2

21, ∆m2
31, sin2 θ12, sin2 θ23 and sin2 θ13 are used. Our

explicit results are summarized in Figs. 4–6. Some brief
discussions are in order.
(1) Figure 4 shows the allowed parameter space of (xν , yν)
and (α, β) at the 3σ level. We see that β ∼ 0 (or β ∼ 2π)
holds, while α is essentially unrestricted. Again, m3 ≈√

∆m2
31 is a good approximation. The neutrino mass spec-

trum can roughly be determined by using (13). Note that

Fig. 6. Non-parallel patterns of Ml and Mν in Table 2: the
outputs of (〈m〉e, 〈m〉ee), (δ, J ) and (ρ, σ) at the 3σ level

xν ∼ 0.7 is marginally allowed – in this case, m1 and m2
are approximately of the same order.
(2) The outputs of sin2 θ12, sin2 θ23 and sin2 θ13 versus
Rν are illustrated in Fig. 5. We are unable to obtain the
maximal atmospheric neutrino mixing (i.e., sin2 θ23 ≈ 0.5
or equivalently sin2 2θ23 ≈ 1) from the non-parallel pat-
terns of lepton mass matrices under consideration. Indeed,
sin2 θ23 > 0.60 (or sin2 2θ23 < 0.96) holds in our ansatz. It
is impossible to get a larger value of sin2 2θ23 even if Rν

approaches its upper bound. In comparison, the output of
sin2 θ12 is favorable and has less dependence on Rν . Only
small values of sin2 θ13 (≤ 0.02) are allowed.
(3) The numerical results for 〈m〉ee/m3 versus 〈m〉e/m3,
J versus δ, and σ versus ρ are shown in Fig. 6. Both
〈m〉e ∼ 10−2 eV and 〈m〉ee ∼ 10−3 eV are too small to
be observable. The maximal magnitude of J is close to
0.02 around δ ∼ ±π/4, and the relation (σ − ρ) ≈ π/2
holds for two Majorana phases of CP -violation.
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Table 3. First of the groups of non-parallel patterns of Ml

and Mν with m1 = 0, which are compatible with the present
experimental data at the 3σ level

Ml I1 I4 I5
Mν I7 I8 I9

Table 4. Second of the groups of non-parallel patterns of Ml

and Mν with m1 = 0, which are compatible with the present
experimental data at the 3σ level

Ml I3 I2 I6
Mν I7 I8 I9

Table 5. Third of the groups of non-parallel patterns of Ml

and Mν with m1 = 0, which are compatible with the present
experimental data at the 3σ level

Ml I2 I6 I3
Mν I7 I8 I9

Table 6. Fourth of the groups of non-parallel patterns of Ml

and Mν with m1 = 0, which are compatible with the present
experimental data at the 3σ level

Ml I5 I1 I4
Mν I7 I8 I9

Comparing the parallel patterns of Ml,ν in Table 1
with those non-parallel patterns of Ml,ν in Table 2, we
find that most of their phenomenological consequences are
quite similar. Therefore, it is experimentally difficult to
distinguish between them.

3.3 Twelve non-parallel patterns (m1 = 0)

Current neutrino oscillation data cannot exclude the pos-
sibility that the neutrino mass m1 or m3 vanishes. Hence
Mν is in principle allowed to take the rank-2 textures (MI7 ,
MI8 and MI9) listed in Table 8. After a careful analysis, we
find that there exist four groups of non-parallel patterns
of Ml and Mν with m1 = 0, which are compatible with the
present experimental data at the 3σ level; see Table 3–6.
The possibility of m3 = 0 has been ruled out. With the
help of (18) and (19), it is easy to prove that three com-
binations of Ml and Mν in each of the above four groups
are isomeric. For the charged leptons, the expressions of
(Al, Bl, Cl) and (ai , bi , ci) can be found in (21) and (22).
As for the neutrinos, we obtain

Ãν = m3 (1 − yν) ,

B̃ν = m3
√

yν − z2
ν , (26)

where zν ≡ C̃ν/m3. We see that it is impossible to fix C̃ν (or
B̃ν) in terms of mi, due to the fact that Det(Mν) = 0 holds.
This freedom will be removed, however, once the flavor
mixing parameters derived from Ml and Mν are confronted
with the experimental data. To see this point more clearly,

we write out the explicit results of nine elements of the
leptonflavormixingmatrixV for every group ofMl andMν :

Vpq = (al
p)

∗ãν
qeiα + (bl

p)
∗b̃ν

qeiβ + (cl
p)

∗c̃ν
q (27a)

with α ≡ φ̃ν − (ϕl − φl ) and β ≡ ϕ̃ν − φl corresponding
to Table 3;

Vpq = (bl
p)

∗ãν
qeiα + (al

p)
∗b̃ν

qeiβ + (cl
p)

∗c̃ν
q (27b)

with α ≡ φ̃ν − φl and β ≡ ϕ̃ν − (ϕl − φl ) corresponding
to Table 4;

Vpq = (al
p)

∗ãν
qeiα + (cl

p)
∗b̃ν

qeiβ + (bl
p)

∗c̃ν
q (27c)

with α ≡ φ̃ν − (ϕl − 2φl ) and β ≡ ϕ̃ν + φl corresponding
to Table 5; and

Vpq = (cl
p)

∗ãν
qeiα + (al

p)
∗b̃ν

qeiβ + (bl
p)

∗c̃ν
q (27d)

with α ≡ φ̃ν + φl and β ≡ ϕ̃ν − (ϕl − 2φl ) corresponding
to Table 6, where

ãν
1 = − zν√

yν
, ãν

2 = i

√
yν − z2

ν√
yν + y2

ν

, ãν
3 =

√
yν − z2

ν√
1 + yν

;

b̃ν
1 =

√
yν − z2

ν√
yν

, b̃ν
2 = i

zν√
yν + y2

ν

, b̃ν
3 =

zν√
1 + yν

;

c̃ν
1 = 0, c̃ν

2 = −i
√

yν√
1 + yν

, c̃ν
3 =

1√
1 + yν

. (28)

In obtaining (27c) and (27d), we have omitted an overall
phase factor e−iφl .

Note that the sum |ãν
i |2+|b̃ν

i |2 (for i = 1, 2, 3) is indepen-
dent of the free parameter zν . This result implies that Vpq

in (27b) can be arranged to amount to Vpq in (27a). Indeed,
the replacements zν ⇐⇒ √

yν − z2
ν and α ⇐⇒ β (or equiv-

alently φ̃ν ⇐⇒ ϕ̃ν) allow us to transform (Vp1, Vp2, Vp3)
of (27a) into (−Vp1, Vp2, Vp3) of (27b). The extra minus
sign of Vp1 appearing in such a transformation does not
make any physical sense, because it can be removed by
redefining the phases of three charged lepton fields. Thus
we expect that (27a) and (27b) lead to identical results
for lepton flavor mixing and CP -violation. One may show
that (27c) and (27d) result in the same lepton flavor mixing
and CP -violation in a similar way. For this reason, it is only
needed to numerically analyze the non-parallel patterns of
Ml and Mν in Tables 3 and 5.

A numerical analysis indicates that the parameter space
of (yν , zν) or (α, β) can be found, if the 3σ intervals of∆m2

21,
∆m2

31, sin2 θ12, sin2 θ23 and sin2 θ13 are taken into account.
Our results are summarized in Figs. 7– 12. Some comments
are in order.
(1) The parameter space and predictions of Ml and Mν

listed in Table 3 are shown in Figs. 7–9. We see that β ∼ π is
favored but α ∼ π is disfavored. The neutrino mass spec-
trum has a clear hierarchy: xν = 0 and yν ∼ 0.25. The
outputs of sin2 θ12 and sin2 θ23 are well constrained, and



504 Shun Zhou, Zhi-zhong Xing: A systematic study of neutrino mixing and CP -violation from lepton mass matrices

they seem to favor the corresponding experimental lower
bounds. Again, it is impossible to obtain the maximal at-
mospheric neutrino mixing. We observe that large values of
sin2 θ13, more or less close to its experimental upper limit,
are strongly favored. This interesting feature makes the
present ansatz experimentally distinguishable from those
given in Tables 1 and 2. As a straightforward consequence
of the normal neutrino mass hierarchy, the results of 〈m〉e

and 〈m〉ee are both too small to be observable in the near
future. The maximal magnitude of J is close to 0.02 around
|δ| ∼ ±π/7. As for the Majorana phases, we get the relation
(σ − ρ) ≈ π/2 (or −3π/2).
(2) The parameter space of Ml and Mν in Table 4 can be ob-
tained from Fig. 7 with the replacements zν ⇐⇒ √

yν − z2
ν

and α ⇐⇒ β. Such replacements are actually equivalent

Table 7. The best-fit values, 2σ and 3σ intervals of ∆m2
21, |∆m2

31|, sin2 θ12, sin2 θ23

and sin2 θ13 obtained from a global analysis of the latest solar, atmospheric, reactor
and accelerator neutrino oscillation data [14]

∆m2
21 (10−5 eV2) |∆m2

31| (10−3 eV2) sin2 θ12 sin2 θ23 sin2 θ13

Best fit 6.9 2.6 0.30 0.52 0.006
2σ 6.0–8.4 1.8–3.3 0.25–0.36 0.36–0.67 ≤ 0.035
3σ 5.4–9.5 1.4–3.7 0.23–0.39 0.31–0.72 ≤ 0.054

Table 8. The type-I textures of a symmetric lepton mass matrix M (i.e., Ml or
Mν) and the corresponding forms of the phase matrix P (i.e., Pl or Pν) and the
unitary matrix O (i.e., Ol or Oν) used to diagonalize M , in which (A, B, C) or
(Ã, B̃, C̃) are defined to be real and positive

Rank 3 The mass matrix M The phase matrix P The unitary matrix O

I1




0 Ceiϕ 0

Ceiϕ 0 Beiφ

0 Beiφ A







ei(ϕ−φ) 0 0

0 eiφ 0

0 0 1







a1 a2 a3

b1 b2 b3

c1 c2 c3




I2




0 0 Ceiϕ

0 A Beiφ

Ceiϕ Beiφ 0







ei(ϕ−φ) 0 0

0 1 0

0 0 eiφ







a1 a2 a3

c1 c2 c3

b1 b2 b3




I3




0 Ceiϕ Beiφ

Ceiϕ 0 0

Beiφ 0 A







eiφ 0 0

0 ei(ϕ−φ) 0

0 0 1







b1 b2 b3

a1 a2 a3

c1 c2 c3




I4




0 Beiφ Ceiϕ

Beiφ A 0

Ceiϕ 0 0







eiφ 0 0

0 1 0

0 0 ei(ϕ−φ)







b1 b2 b3

c1 c2 c3

a1 a2 a3




I5




A 0 Beiφ

0 0 Ceiϕ

Beiφ Ceiϕ 0







1 0 0

0 ei(ϕ−φ) 0

0 0 eiφ







c1 c2 c3

a1 a2 a3

b1 b2 b3




I6




A Beiφ 0

Beiφ 0 Ceiϕ

0 Ceiϕ 0







1 0 0

0 eiφ 0

0 0 ei(ϕ−φ)







c1 c2 c3

b1 b2 b3

a1 a2 a3




Rank 2 The mass matrix M The phase matrix P The unitary matrix O

I7




0 0 B̃eiφ̃

0 0 C̃eiϕ̃

B̃eiφ̃ C̃eiϕ̃ Ã







eiφ̃ 0 0

0 eiϕ̃ 0

0 0 1







ã1 ã2 ã3

b̃1 b̃2 b̃3

c̃1 c̃2 c̃3




I8




0 C̃eiϕ̃ 0

C̃eiϕ̃ Ã B̃eiφ̃

0 B̃eiφ̃ 0







eiϕ̃ 0 0

0 1 0

0 0 eiφ̃







b̃1 b̃2 b̃3

c̃1 c̃2 c̃3

ã1 ã2 ã3




I9




Ã B̃eiφ̃ C̃eiϕ̃

B̃eiφ̃ 0 0

C̃eiϕ̃ 0 0







1 0 0

0 eiφ̃ 0

0 0 eiϕ̃







c̃1 c̃2 c̃3

ã1 ã2 ã3

b̃1 b̃2 b̃3
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Fig. 7. Non-parallel patterns of Ml and Mν in Table 3: the
parameter space of (yν , zν) and (α, β) at the 3σ level

to B̃ν ⇐⇒ C̃ν and φ̃ν ⇐⇒ ϕ̃ν between Mν in Table 3
and its counterpart in Table 4. The phenomenological con-
sequences of Ml and Mν in both cases are identical, as
already shown above.
(3) Figures 10–12 show the allowed parameter space and
predictions of Ml and Mν listed in Table 5. We see that
α ∼ π and β ∼ 0 (or 2π) are essentially favored. The
neutrino mass hierarchy is quite similar to that illustrated
in Fig. 7. The output of sin2 θ23 seems to favor the cor-
responding experimental upper bound, and the maximal
atmospheric neutrino mixing cannot be achieved. In com-
parison, the outputs of sin2 θ12 and sin2 θ13 are favorable
and have less dependence on Rν . Note that the predic-
tions of this ansatz for 〈m〉ee and J may reach 0.4m3 (at
〈m〉e ∼ 0.15m3) and 0.03 (at δ ∼ ±3π/4), respectively.
Both results are apparently larger than those obtained
above. Again, the relation (σ − ρ) ≈ π/2 (or −3π/2) holds
for two Majorana phases.
(4) The parameter space of Ml and Mν in Table 6 can
be obtained from Fig. 10 with the replacements zν ⇐⇒√

yν − z2
ν and α ⇐⇒ β. Their phenomenological conse-

quences are identical to those derived from Ml and Mν in
Table 5.

The main unsatisfactory output of twelve non-parallel
patterns of Ml and Mν , just like the one of six parallel
patterns of Ml and Mν in Table 1, is that sin2 2θ23 cannot
reach the experimentally-favored maximal value. Whether
this is really a problem remains to be seen, especially after
more accurate neutrino oscillation data are accumulated
in the near future.

Fig. 8. Non-parallel patterns of Ml and Mν in Table 3: the
outputs of sin2 θ12, sin2 θ23 and sin2 θ13 versus Rν at the 3σ level

4 A seesaw ansatz of lepton mass matrices

To illustrate, let us discuss a simple way to avoid the po-
tential tension between the smallness of Rν and the large-
ness of sin2 θ23 arising from those parallel patterns of Ml

and Mν in Table 1. In this connection, we take account of
the Fukugita–Tanimoto–Yanagida hypothesis [23] together
with the seesaw mechanism [24] – namely, the charged lep-
ton mass matrix Ml and the Dirac neutrino mass matrix
MD may take one of the six parallel patterns, while the
right-handed Majorana neutrino mass matrix MR takes
the form MR = M0E1 with M0 denoting a very large mass
scale and E1 being the unity matrix given in (18). Then
the effective (left-handed) neutrino mass matrix Mν reads

Mν = MDM−1
R MT

D =
M2

D

M0
. (29)
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Fig. 9. Non-parallel patterns of Ml and Mν in Table 3: the
outputs of (〈m〉e, 〈m〉ee), (δ, J ) and (ρ, σ) at the 3σ level

For simplicity, we further assume MD to be real (i.e.,
φD = ϕD = 0). It turns out that the real orthogonal
transformation UD, which is defined to diagonalize MD,
can simultaneously diagonalize Mν :

UT
DMνUD =

(UT
DMDUD)2

M0
=


m1 0 0

0 m2 0
0 0 m3


 , (30)

where mi ≡ d2
i /M0 with di standing for the eigenvalues of

MD. In terms of the neutrino mass ratios xν ≡ m1/m2 =
(d1/d2)2 and yν ≡ m2/m3 = (d2/d3)2, we obtain the ex-
plicit expressions of nine matrix elements of Uν = UD:

aν
1 =

[
1 − √

yν

(1 +
√

xν)(1 − √
xνyν)(1 − √

yν +
√

xνyν)

]1/2

,

aν
2 = −

[ √
xν(1 +

√
xνyν)

(1 +
√

xν)(1 +
√

yν)(1 − √
yν +

√
xνyν)

]1/2

,

Fig. 10. Non-parallel patterns of Ml and Mν in Table 5: the
parameter space of (yν , zν) and (α, β) at the 3σ level

aν
3 =

[
yν

√
xνyν(1 − √

xν)
(1 − √

xνyν)(1 +
√

yν)(1 − √
yν +

√
xνyν)

]1/2

,

bν
1 =

[ √
xν(1 − √

yν)
(1 +

√
xν)(1 − √

xνyν)

]1/2

,

bν
2 =

[
1 +

√
xνyν

(1 +
√

xν)(1 +
√

yν)

]1/2

, (31)

bν
3 =

[ √
yν(1 − √

xν)
(1 − √

xνyν)(1 +
√

yν)

]1/2

,

cν
1

= −
[ √

xνyν(1 − √
xν)(1 +

√
xνyν)

(1 +
√

xν)(1 − √
xνyν)(1 − √

yν +
√

xνyν)

]1/2

,

cν
2

= −
[ √

yν(1 − √
xν)(1 − √

yν)
(1 +

√
xν)(1 +

√
yν)(1 − √

yν +
√

xνyν)

]1/2

,

cν
3

=
[

(1 − √
yν)(1 +

√
xνyν)

(1 − √
xνyν)(1 +

√
yν)(1 − √

yν +
√

xνyν)

]1/2

.

The lepton flavor mixing matrix V = U†
l Uν remains to take

the same form as (23), but the relevant phase parameters
are now defined as α ≡ −ϕl −β and β ≡ −φl . Comparing
between (22) and (31), one can immediately find that the
magnitudes of (θ12, θ23, θ13) in the non-seesaw case can be
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Fig. 11. Non-parallel patterns of Ml and Mν in Table 5: the
outputs of sin2 θ12, sin2 θ23 and sin2 θ13 versus Rν at the 3σ level

reproduced in the seesaw case with much smaller values of
xν and yν . The latter will allow Rν to be more strongly sup-
pressed. It is therefore possible to relax the tension between
the smallness of Rν and the largeness of sin2 θ23 appear-
ing in the non-seesaw case. A careful numerical analysis of
six seesaw-modified patterns of lepton mass matrices does
support this observation. The results of our calculations
are summarized as follows.
(1) We find that the new ansatz are compatible very well
with current neutrino oscillation data, even if the 2σ in-
tervals of ∆m2

21, ∆m2
31, sin2 θ12, sin2 θ23 and sin2 θ13 are

taken into account. Hence it is unnecessary to do a similar
analysis at the 3σ level. The parameter space of (xν , yν)
and (α, β) is illustrated in Fig. 13, where xν ∼ yν ∼ 0.2
and β ∼ π hold approximately. Again m3 ≈

√
∆m2

31 is a
good approximation. The values of three neutrino masses
read explicitly m3 ≈ (4.2–5.8) × 10−2 eV, m2 ≈ (0.84–

Fig. 12. Non-parallel patterns of Ml and Mν in Table 5: the
outputs of (〈m〉e, 〈m〉ee), (δ, J ) and (ρ, σ) at the 3σ level

1.2) × 10−2 eV and m1 ≈ (1.6–1.9) × 10−3 eV, which are
obtained by taking xν ≈ yν ≈ 0.2.
(2) The outputs of sin2 θ12, sin2 θ23 and sin2 θ13 versus Rν

are shown in Fig. 14 at the 2σ level. One can see that the
magnitude of sin2 θ12 is essentially unconstrained. Now the
maximal atmospheric neutrino mixing (i.e., sin2 θ23 ≈ 0.5
or sin2 2θ23 ≈ 1) is achievable in the region of Rν ∼ 0.036–
0.047. It is also possible to obtain sin2 θ13 ≤ 0.035, just
below the experimental upper bound [4]. If sin2 2θ13 ≥ 0.02
really holds, the measurement of θ13 should be realizable
in a future reactor neutrino oscillation experiment [25].
(3) Figure 15 illustrates the numerical results of 〈m〉e,
〈m〉ee, δ, ρ, σ and J . We obtain 〈m〉e ∼ 10−2 eV for the
tritium beta decay and 〈m〉ee ∼ 10−3 eV for the neutrino-
less double beta decay – both of them are too small to be
experimentally accessible in the near future. We see that
|J | ∼ 0.025 can be obtained. Such a size of CP -violation



508 Shun Zhou, Zhi-zhong Xing: A systematic study of neutrino mixing and CP -violation from lepton mass matrices

Fig. 13. A simple seesaw example: the parameter space of
(xν , yν) and (α, β) at the 2σ level

is expected to be measured in the future long-baseline neu-
trino oscillation experiments. As for the Majorana phases
ρ and σ, the relation σ ≈ ρ holds. This result is easily
understandable, because Uν is real in the seesaw case. It is
worth mentioning that the effective neutrino mass matrix
Mν does not persist in the simple texture as Ml has, thus
the allowed ranges of δ, ρ and σ become smaller in the
seesaw case than in the non-seesaw case.

It should be noted that the eigenvalues of MD and
the heavy Majorana mass scale M0 are not specified in
the above analysis. But one may obtain |d1/d2| =

√
xν ∼

0.4 and |d2/d3| =
√

yν ∼ 0.4. Such a weak hierarchy of
(|d1|, |d2|, |d3|) means that MD cannot directly be con-
nected to the charged lepton mass matrix Ml, nor can it
be related to the up-type quark mass matrix (Mu) or its
down-type counterpart (Md) in a simple way. If the hy-
pothesis MR = M0E1 is rejected but the result UT

ν MνUν =
Diag{m1, m2, m3} with Uν given by (31) is maintained, it
will be possible to determine the pattern of MR by means
of the inverted seesaw formula MR = MT

DM−1
ν MD [26]

and by assuming a specific relation between MD and Mu.
For example, one may simply assume MD = Mu with Mu

taking the approximate Fritzsch form,

Mu ∼

 0

√
mumc 0√

mumc 0
√

mcmt

0
√

mcmt mt


 . (32)

Just for the purpose of illustration, we typically input xν ∼
yν ∼ 0.18 as well as mu/mc ∼ mc/mt ∼ 0.0031 and mt ≈

Fig. 14. A simple seesaw example: the outputs of sin2 θ12,
sin2 θ23 and sin2 θ13 versus Rν at the 2σ level

175 GeV at the electroweak scale [6]. Then we arrive at

MR ∼ 3.0 × 1015 (33)

×

6.1 × 10−8 1.2 × 10−5 2.0 × 10−4

1.2 × 10−5 3.5 × 10−3 5.9 × 10−2

2.0 × 10−4 5.9 × 10−2 1




in units of GeV. This order-of-magnitude estimate shows
that the scale ofMR is close to that of grand unified theories,
ΛGUT ∼ 1016 GeV, but the texture of MR and that of
MD (or Ml) have little similarity. It is certainly a very
non-trivial task to combine the seesaw mechanism and
those phenomenologically-favored patterns of lepton mass
matrices. In this sense, the simple scenarios discussed in [22,
23] and in the present paper may serve as a helpful example
to give readers a ball-park feeling of the problem itself and
possible solutions to it.
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Fig. 15. A simple seesaw example: the outputs of (〈m〉e, 〈m〉ee),
(δ, J ) and (ρ, σ) at the 2σ level

Of course, a similar application of the seesawmechanism
to the non-parallel patterns of lepton mass matrices is
straightforward. In this case, an enhancement of sin2 2θ23
up to its maximal value can also be achieved.

5 Summary

To summarize, we have analyzed 400 combinations of the
charged lepton and neutrino mass matrices with six texture
zeros in a systematic way. Only 24 of them, including six
parallel patterns and 18 non-parallel patterns, are found
to be compatible with current neutrino oscillation data at
the 3σ level. Those viable patterns of lepton mass matrices
can be classified into a few distinct categories. The textures
in each category are demonstrated to have the same phe-
nomenological consequences, such as the normal neutrino
mass hierarchy and the bi-large flavor mixing pattern. We

have also discussed a very simple way to incorporate the
seesaw mechanism in the charged lepton and Dirac neu-
trino mass matrices with six texture zeros. We illustrate
that there is no problem to fit current experimental data
even at the 2σ level in the seesaw case. In particular, the
maximal atmospheric neutrino mixing can naturally be rec-
onciled with a relatively strong neutrino mass hierarchy.
Our results for effective masses of the tritium beta decay
and the neutrinoless double beta decay are too small to
be experimentally accessible in both the seesaw and non-
seesaw cases, but the strength of CP -violation can reach
the percent level and might be detectable in the upcoming
long-baseline neutrino oscillation experiments.

We conclude that the peculiar feature of isomeric lep-
ton mass matrices with six texture zeros is very suggestive
for model building. We therefore look forward to seeing
whether such simple phenomenological ansätze can sur-
vive the more stringent experimental test or not in the
near future.
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